Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

TiO2 nanotubes on Ti: Influence of nanoscale morphology on bone cell–materials interaction

Identifieur interne : 005A17 ( Main/Exploration ); précédent : 005A16; suivant : 005A18

TiO2 nanotubes on Ti: Influence of nanoscale morphology on bone cell–materials interaction

Auteurs : Kakoli Das ; Susmita Bose ; Amit Bandyopadhyay [États-Unis]

Source :

RBID : ISTEX:A56B3C41E571C771EC45BAFB916D811FBDC3620F

Descripteurs français

English descriptors

Abstract

Ti being bioinert shows poor bone cell adhesion with an intervening fibrous capsule. Ti could be made bioactive by several methods including growing in situ TiO2 layer on Ti‐surface. TiO2 nanotubes were grown on Ti surface via anodization process and the bone cell–material interactions were evaluated. Human osteoblast cell attachment and growth behavior were studied using an osteoprecursor cell line for 3, 7, and 11 days. An abundant amount of extracellular matrix (ECM) between the neighboring cells was noticed on anodized nanotube surface with filopodia extensions coming out from cells to grasp the nanoporous surface of the nanotube for anchorage. To better understand and compare cell–materials interactions, anodized nanoporous sample surfaces were etched with different patterns. Preferential cell attachment was noticed on nanotube surface compare to almost no cells in etched Ti surface. Cell adhesion with vinculin adhesive protein showed higher intensity, positive contacts on nanoporous surface and thin focal contacts on the Ti‐control. Immunochemistry study with alkaline phosphatase showed enhanced osteoblastic phenotype expressions in nanoporous surface. Osteoblast proliferation was significantly higher on anodized nanotube surface. Surface properties changed with the emergence of nanoscale morphology. Higher nanometer scale roughness, low contact angle and high surface energy in nanoporous surface enhanced the osteoblast‐material interactions. Mineralization study was done under simulated body fluid (SBF) with ion concentration nearly equal to human blood plasma to understand biomimetic apatite deposition behavior. Although apatite layer formation was noticed on nanotube surface, but it was nonuniform even after 21 days in SBF. © 2008 Wiley Periodicals, Inc. J Biomed Mater Res, 2009

Url:
DOI: 10.1002/jbm.a.32088


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">TiO2 nanotubes on Ti: Influence of nanoscale morphology on bone cell–materials interaction</title>
<author>
<name sortKey="Das, Kakoli" sort="Das, Kakoli" uniqKey="Das K" first="Kakoli" last="Das">Kakoli Das</name>
</author>
<author>
<name sortKey="Bose, Susmita" sort="Bose, Susmita" uniqKey="Bose S" first="Susmita" last="Bose">Susmita Bose</name>
</author>
<author>
<name sortKey="Bandyopadhyay, Amit" sort="Bandyopadhyay, Amit" uniqKey="Bandyopadhyay A" first="Amit" last="Bandyopadhyay">Amit Bandyopadhyay</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:A56B3C41E571C771EC45BAFB916D811FBDC3620F</idno>
<date when="2009" year="2009">2009</date>
<idno type="doi">10.1002/jbm.a.32088</idno>
<idno type="url">https://api.istex.fr/document/A56B3C41E571C771EC45BAFB916D811FBDC3620F/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">005286</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">005286</idno>
<idno type="wicri:Area/Istex/Curation">005286</idno>
<idno type="wicri:Area/Istex/Checkpoint">002094</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">002094</idno>
<idno type="wicri:doubleKey">1549-3296:2009:Das K:tio:nanotubes:on</idno>
<idno type="wicri:Area/Main/Merge">005A81</idno>
<idno type="wicri:Area/Main/Curation">005A17</idno>
<idno type="wicri:Area/Main/Exploration">005A17</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">TiO
<hi rend="subscript">2</hi>
nanotubes on Ti: Influence of nanoscale morphology on bone cell–materials interaction</title>
<author>
<name sortKey="Das, Kakoli" sort="Das, Kakoli" uniqKey="Das K" first="Kakoli" last="Das">Kakoli Das</name>
<affiliation>
<wicri:noCountry code="subField">99164</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Bose, Susmita" sort="Bose, Susmita" uniqKey="Bose S" first="Susmita" last="Bose">Susmita Bose</name>
<affiliation>
<wicri:noCountry code="subField">99164</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Bandyopadhyay, Amit" sort="Bandyopadhyay, Amit" uniqKey="Bandyopadhyay A" first="Amit" last="Bandyopadhyay">Amit Bandyopadhyay</name>
<affiliation></affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
<wicri:cityArea>Correspondence address: W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman</wicri:cityArea>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Biomedical Materials Research Part A</title>
<title level="j" type="alt">JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A</title>
<idno type="ISSN">1549-3296</idno>
<idno type="eISSN">1552-4965</idno>
<imprint>
<biblScope unit="vol">90A</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="225">225</biblScope>
<biblScope unit="page" to="237">237</biblScope>
<biblScope unit="page-count">13</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2009-06">2009-06</date>
</imprint>
<idno type="ISSN">1549-3296</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1549-3296</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adhesion</term>
<term>Adhesive molecule vinculin</term>
<term>Alkaline phosphatase</term>
<term>Anatase phase</term>
<term>Angle diffraction</term>
<term>Anodic</term>
<term>Anodic oxidation</term>
<term>Anodic oxide</term>
<term>Anodization</term>
<term>Anodization process</term>
<term>Anodization voltage</term>
<term>Anodized</term>
<term>Anodized nanotube</term>
<term>Anodized nanotube surface</term>
<term>Anodized samples</term>
<term>Anodized surface</term>
<term>Anodized surfaces</term>
<term>Attachment</term>
<term>Average roughness</term>
<term>Bandyopadhyay</term>
<term>Better cell attachment</term>
<term>Biomaterials</term>
<term>Biomed</term>
<term>Biomed mater</term>
<term>Biomedical</term>
<term>Biomedical materials research part</term>
<term>Bone cell adhesion</term>
<term>Bone cell attachment</term>
<term>Bone cells</term>
<term>Bone formation</term>
<term>Bone ingrowth</term>
<term>Bone interactions</term>
<term>Bone tissue</term>
<term>Bose</term>
<term>Calcium phosphate coating</term>
<term>Cell adhesion</term>
<term>Cell attachment</term>
<term>Cell culture</term>
<term>Cell culture medium</term>
<term>Cell differentiation</term>
<term>Cell media</term>
<term>Cell proliferation</term>
<term>Citric acid</term>
<term>Contact angle</term>
<term>Contact angles</term>
<term>Control surfaces</term>
<term>Culture time</term>
<term>Disk surface</term>
<term>Electrolyte</term>
<term>Fesem image</term>
<term>Focal contacts</term>
<term>Glass vials</term>
<term>Healing time</term>
<term>High surface energy</term>
<term>Higher levels</term>
<term>Human blood plasma</term>
<term>Hydroxyapatite</term>
<term>Hydroxyapatite coating</term>
<term>Implant</term>
<term>Lopodia extensions</term>
<term>Mater</term>
<term>Mature osteoblastic phenomenon</term>
<term>Morphology</term>
<term>Multistep process</term>
<term>Nanophase metals</term>
<term>Nanoporous</term>
<term>Nanoporous morphology</term>
<term>Nanoporous structure</term>
<term>Nanoporous surface</term>
<term>Nanoporous surfaces</term>
<term>Nanoporous tio2</term>
<term>Nanoporous tio2 surface</term>
<term>Nanoscale</term>
<term>Nanoscale morphology</term>
<term>Nanotube</term>
<term>Nanotube formation</term>
<term>Nanotube surface</term>
<term>Nanotube surfaces</term>
<term>Online issue</term>
<term>Opc1</term>
<term>Opc1 cells</term>
<term>Optical density</term>
<term>Osteoblast</term>
<term>Osteoblast adhesion</term>
<term>Osteoblast attachment</term>
<term>Osteoblast cell attachment</term>
<term>Osteoblast cells</term>
<term>Osteoblast differentiation</term>
<term>Osteoblast proliferation</term>
<term>Osteoblastic</term>
<term>Oxide</term>
<term>Oxide layer</term>
<term>Phosphatase</term>
<term>Porous morphology</term>
<term>Proliferation</term>
<term>Propidium iodide</term>
<term>Room temperature</term>
<term>Roughness</term>
<term>Roughness value</term>
<term>Rutile phase</term>
<term>Several methods</term>
<term>Similar results</term>
<term>Standard deviation</term>
<term>Standard deviations</term>
<term>Sulfuric acid</term>
<term>Surf</term>
<term>Surf coat technol</term>
<term>Surface chemistry</term>
<term>Surface energy</term>
<term>Surface properties</term>
<term>Surface roughness</term>
<term>Technol</term>
<term>Ticontrol surfaces</term>
<term>Time period</term>
<term>Tio2</term>
<term>Tio2 nanotube surface</term>
<term>Tio2 nanotube surfaces</term>
<term>Tio2 nanotubes</term>
<term>Tissue culture plates</term>
<term>Titania</term>
<term>Titanium</term>
<term>Titanium implants</term>
<term>Titanium oxide nanotube arrays</term>
<term>Titanium surface</term>
<term>Vinculin</term>
<term>Wall thickness</term>
<term>Washington state university</term>
<term>Wiley periodicals</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Adhesion</term>
<term>Adhesive molecule vinculin</term>
<term>Alkaline phosphatase</term>
<term>Anatase phase</term>
<term>Angle diffraction</term>
<term>Anodic</term>
<term>Anodic oxidation</term>
<term>Anodic oxide</term>
<term>Anodization</term>
<term>Anodization process</term>
<term>Anodization voltage</term>
<term>Anodized</term>
<term>Anodized nanotube</term>
<term>Anodized nanotube surface</term>
<term>Anodized samples</term>
<term>Anodized surface</term>
<term>Anodized surfaces</term>
<term>Attachment</term>
<term>Average roughness</term>
<term>Bandyopadhyay</term>
<term>Better cell attachment</term>
<term>Biomaterials</term>
<term>Biomed</term>
<term>Biomed mater</term>
<term>Biomedical</term>
<term>Biomedical materials research part</term>
<term>Bone cell adhesion</term>
<term>Bone cell attachment</term>
<term>Bone cells</term>
<term>Bone formation</term>
<term>Bone ingrowth</term>
<term>Bone interactions</term>
<term>Bone tissue</term>
<term>Bose</term>
<term>Calcium phosphate coating</term>
<term>Cell adhesion</term>
<term>Cell attachment</term>
<term>Cell culture</term>
<term>Cell culture medium</term>
<term>Cell differentiation</term>
<term>Cell media</term>
<term>Cell proliferation</term>
<term>Citric acid</term>
<term>Contact angle</term>
<term>Contact angles</term>
<term>Control surfaces</term>
<term>Culture time</term>
<term>Disk surface</term>
<term>Electrolyte</term>
<term>Fesem image</term>
<term>Focal contacts</term>
<term>Glass vials</term>
<term>Healing time</term>
<term>High surface energy</term>
<term>Higher levels</term>
<term>Human blood plasma</term>
<term>Hydroxyapatite</term>
<term>Hydroxyapatite coating</term>
<term>Implant</term>
<term>Lopodia extensions</term>
<term>Mater</term>
<term>Mature osteoblastic phenomenon</term>
<term>Morphology</term>
<term>Multistep process</term>
<term>Nanophase metals</term>
<term>Nanoporous</term>
<term>Nanoporous morphology</term>
<term>Nanoporous structure</term>
<term>Nanoporous surface</term>
<term>Nanoporous surfaces</term>
<term>Nanoporous tio2</term>
<term>Nanoporous tio2 surface</term>
<term>Nanoscale</term>
<term>Nanoscale morphology</term>
<term>Nanotube</term>
<term>Nanotube formation</term>
<term>Nanotube surface</term>
<term>Nanotube surfaces</term>
<term>Online issue</term>
<term>Opc1</term>
<term>Opc1 cells</term>
<term>Optical density</term>
<term>Osteoblast</term>
<term>Osteoblast adhesion</term>
<term>Osteoblast attachment</term>
<term>Osteoblast cell attachment</term>
<term>Osteoblast cells</term>
<term>Osteoblast differentiation</term>
<term>Osteoblast proliferation</term>
<term>Osteoblastic</term>
<term>Oxide</term>
<term>Oxide layer</term>
<term>Phosphatase</term>
<term>Porous morphology</term>
<term>Proliferation</term>
<term>Propidium iodide</term>
<term>Room temperature</term>
<term>Roughness</term>
<term>Roughness value</term>
<term>Rutile phase</term>
<term>Several methods</term>
<term>Similar results</term>
<term>Standard deviation</term>
<term>Standard deviations</term>
<term>Sulfuric acid</term>
<term>Surf</term>
<term>Surf coat technol</term>
<term>Surface chemistry</term>
<term>Surface energy</term>
<term>Surface properties</term>
<term>Surface roughness</term>
<term>Technol</term>
<term>Ticontrol surfaces</term>
<term>Time period</term>
<term>Tio2</term>
<term>Tio2 nanotube surface</term>
<term>Tio2 nanotube surfaces</term>
<term>Tio2 nanotubes</term>
<term>Tissue culture plates</term>
<term>Titania</term>
<term>Titanium</term>
<term>Titanium implants</term>
<term>Titanium oxide nanotube arrays</term>
<term>Titanium surface</term>
<term>Vinculin</term>
<term>Wall thickness</term>
<term>Washington state university</term>
<term>Wiley periodicals</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Biomatériau</term>
<term>Oxyde</term>
<term>Titane</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Ti being bioinert shows poor bone cell adhesion with an intervening fibrous capsule. Ti could be made bioactive by several methods including growing in situ TiO2 layer on Ti‐surface. TiO2 nanotubes were grown on Ti surface via anodization process and the bone cell–material interactions were evaluated. Human osteoblast cell attachment and growth behavior were studied using an osteoprecursor cell line for 3, 7, and 11 days. An abundant amount of extracellular matrix (ECM) between the neighboring cells was noticed on anodized nanotube surface with filopodia extensions coming out from cells to grasp the nanoporous surface of the nanotube for anchorage. To better understand and compare cell–materials interactions, anodized nanoporous sample surfaces were etched with different patterns. Preferential cell attachment was noticed on nanotube surface compare to almost no cells in etched Ti surface. Cell adhesion with vinculin adhesive protein showed higher intensity, positive contacts on nanoporous surface and thin focal contacts on the Ti‐control. Immunochemistry study with alkaline phosphatase showed enhanced osteoblastic phenotype expressions in nanoporous surface. Osteoblast proliferation was significantly higher on anodized nanotube surface. Surface properties changed with the emergence of nanoscale morphology. Higher nanometer scale roughness, low contact angle and high surface energy in nanoporous surface enhanced the osteoblast‐material interactions. Mineralization study was done under simulated body fluid (SBF) with ion concentration nearly equal to human blood plasma to understand biomimetic apatite deposition behavior. Although apatite layer formation was noticed on nanotube surface, but it was nonuniform even after 21 days in SBF. © 2008 Wiley Periodicals, Inc. J Biomed Mater Res, 2009</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Washington (État)</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Bose, Susmita" sort="Bose, Susmita" uniqKey="Bose S" first="Susmita" last="Bose">Susmita Bose</name>
<name sortKey="Das, Kakoli" sort="Das, Kakoli" uniqKey="Das K" first="Kakoli" last="Das">Kakoli Das</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Bandyopadhyay, Amit" sort="Bandyopadhyay, Amit" uniqKey="Bandyopadhyay A" first="Amit" last="Bandyopadhyay">Amit Bandyopadhyay</name>
</noRegion>
<name sortKey="Bandyopadhyay, Amit" sort="Bandyopadhyay, Amit" uniqKey="Bandyopadhyay A" first="Amit" last="Bandyopadhyay">Amit Bandyopadhyay</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 005A17 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 005A17 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:A56B3C41E571C771EC45BAFB916D811FBDC3620F
   |texte=   TiO2 nanotubes on Ti: Influence of nanoscale morphology on bone cell–materials interaction
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022